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Abstract

Exact deflection models of beams with n actuators of shear piezoelectric are developed analytically. To formulate the

models, the first-order and higher-order beam theories are used. The exact solutions are obtained with the aid of the

state-space approach and Jordan canonical form. A case study is presented to evaluate the performance of the authors�
previously reported models. Through a demonstrative example, a comparative study of the first-order and higher-order

beams with two shear piezoelectric actuators is attained. It is shown that the first-order beam cannot predict the beam

behavior when compared with the results of the higher-order beam. Further applications of the solutions are presented

by investigating the effects of actuators lengths and locations on the deflected shapes of beams with two piezoelectric

actuators. Some interesting deflection curves are presented. For example, the deflection curve of a H–H beam resembles

saw teeth that rotate clockwise about the central location with the increase of actuators lengths. The presented exact

solutions can be used in the design process to obtain detailed deformation information of beams with various boundary

conditions. Moreover, the presented analysis can be readily used to perform precise shape control of beams with n
actuators of shear piezoelectric.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The development of piezoelectric materials has constituted a revolution in sensing and actuation ap-

plications in recent years. The rapid response and high resolution, along with other properties such as large

bandwidth and little power consumption, make piezoelectric materials increasingly popular as potential

candidates for sensors and actuators substitution. Piezoelectric elements are being increasingly utilized in

many structures including aerospace applications, sport goods, and MEMS applications. For instance,
piezoelectric actuators are incorporated in flexible structures to provide precision position, to reject noise

and vibration and to supply linear motion.
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When the piezoelectric actuators are employed in precise position control, precise deflection solution

becomes necessary to predict the structure response. Analytical model can give exact information of the

deformation. For example, the model can be used to obtain detailed deflection, slope and curvature change

of a beam with piezoelectric actuators.
Recently, shear piezoelectric actuators have been used to generate deflection and to reject vibration in

beams. The idea of exploiting the shear mode to create transverse deflection in sandwich beams was first

suggested by Sun and Zhang (1995). A commercial finite element package was used to model numerically a

cantilever beam with shear piezoelectric actuator. It was shown that embedded shear actuators offer many

advantages over surface mounted extension actuators. In a more recent work, Zhang and Sun (1996)

formulated an analytical model of a sandwich beam with shear piezoelectric actuator that occupies the

entire core. The model derivation was simplified by assuming that the face layers follow Euler–Bernoulli

beam, whereas the core layer obeys Timoshenko beam. Furthermore, a closed form solution of the static
deflection was presented for a cantilever beam. A finite element approach was used by Benjeddou et al.

(1997, 1999) to model a sandwich beam with shear and extension piezoelectric elements. The finite element

model employed the displacement field of Zhang and Sun (1996). It was shown that the finite element

results agree quite well with the analytical results. Raja et al. (2002) extended the finite element model of

Benjeddou�s research team to include vibration control scheme. It was observed that the shear actuator is

more efficient in rejecting vibration than the extension actuator for the same control effort. Aldraihem and

Khdeir (2000) proposed analytical models and exact solutions for beams with shear and extension piezo-

electric actuators. The models are based on the first-order beam theory (FOBT) and higher-order beam
theory (HOBT). The exact solutions are obtained by using the state-space approach along with Jordan

canonical form. The deflections of beams with various boundary conditions were investigated. Vel and

Batra (2001) presented an exact 3-D state space solution for the static cylindrical bending of simply sup-

ported plates with shear mode actuators.

The previous studies have been primarily devoted to two approaches; viz. analytical investigation of

beams/plates with shear piezoelectric actuators occupying the entire core (Zhang and Sun, 1996; Aldraihem

and Khdeir, 2000; Vel and Batra, 2001) and numerical investigation of cantilever beams with segmented

shear piezoelectric actuators (Sun and Zhang, 1995; Benjeddou et al., 1997, 1999; Raja et al., 2002).
The present study is a continuation of the authors� recent work (Khdeir and Aldraihem, 2001), in which

the deflections of first-order and higher-order beams with one shear piezoelectric actuator were obtained.

Although the presented solutions in investigation (Khdeir and Aldraihem, 2001) were analytical, they were

approximate in the sense of material properties. It was assumed that the stiffness of the sandwich beam is

uniform and constant throughout the beam length. The aim of the present study is to develop analytical

models and to present exact solutions of beams with n actuators of shear-mode piezoelectric. The first-order

and higher-order beam theories will be applied in the formulation. The results of the proposed theories will

be compared to demonstrate the effectiveness of each theory in predicting the beam deflection. The ac-
curacy of the approximated solutions given in Khdeir and Aldraihem (2001) is evaluated via a comparison

with the present exact solutions for beams with various boundary conditions. The deflections created by

two shear actuators will be presented for beams with various boundary conditions. The effect of actuators

length and location on the deflected shapes of the beam is also investigated.

2. Analytical formulation

Consider the sandwich beam shown in Fig. 1. The beam is composed of two facing layers and a central

layer. The central layer is a core consisting of n piezoelectric actuators and foam segments. The actuators

are shear-mode piezoelectric with poling direction along the x-direction. The foam segments, the actuators
and the facing layers are perfectly bonded to each other. Each piezoelectric actuator can possess its own
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material and geometrical properties. The sandwich beam is symmetric about its mid-plane and is not

subjected to external mechanical loads. The material properties of the beam can be isotropic and specially
orthotropic.

Using the principle of stationary potential energy, the governing equations of HOBT with shear piezo-

electric actuators are derived as

ðMxÞ0 � n1ðPxÞ0 � Qx þ n2Sx ¼ 0

n1ðPxÞ00 þ ðQxÞ0 � n2ðSxÞ0 ¼ 0
ð1Þ

with the following associated boundary conditions at x ¼ 0;L:

Essential B:C: Natural B:C:
/ Mx � n1Px
w0 �n1Px
w n1ðPxÞ0 þ Qx � n2Sx

ð2Þ

where n1 ¼ 4=3h2, n2 ¼ 3n1 and h is the total thickness of the sandwich beam. A prime on a quantity de-

notes ordinary differentiation with respect to x.
The moment and force resultants in terms of displacement quantities are given by

Mx ¼ D11/
0 � n1F11ð/0 þ w00Þ

Px ¼ F11/
0 � n1H11ð/0 þ w00Þ

Qx ¼ ðA55 � n2D55Þð/ þ w0Þ � Qp
x

Sx ¼ ðD55 � n2F55Þð/ þ w0Þ � Sp
x

ð3Þ

where w denotes the transverse displacement of the beam mid-plane and / denotes the rotation of normal

to the x-axis about the y-axis.

Fig. 1. The geometry of a beam with n actuators of shear piezoelectric.
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The beam stiffnesses are defined by

ðD11; F11;H11Þ ¼ b
Z h=2

�h=2
ðz2; z4; z6ÞeQQ11 dz

ðA55;D55; F55Þ ¼ b
Z h=2

�h=2
ð1; z2; z4ÞeQQ55 dz

ð4Þ

The piezoelectric stress resultants are expressed as

ðQp
x ; S

p
x Þ ¼ b

Z h=2

�h=2
ð1; z2ÞeQQ55E1d15 dz ð5Þ

where

eQQ11 ¼ Q33 �
Q2

23

Q22

; eQQ55 ¼ Q55 ð6Þ

and

Qij ¼ cij �
ci3cj3
c33

; i; j ¼ 1; 2; 4; 5; 6

Qi3 ¼ ci3 �
c1ic13
c11

; i ¼ 2; 3
ð7Þ

where cij are the components of the stiffness matrix, d15 is the piezoelectric shear coefficient, E1 is the electric

field applied across the thickness of a shear piezoelectric actuator and b is the beam width.

Substituting Eq. (3) into (1) and perform some arrangements, the equilibrium equations can be written in
terms of displacement quantities as

/00 ¼ c1ð/ þ w0Þ þ c2w000 � f1Qp
x þ f3Sp

x

w
0000 ¼ c3ð/0 þ w00Þ þ f6ðQp

xÞ
0 þ f7ðSp

x Þ
0 ð8Þ

where

c1 ¼ � e1
e2
; c2 ¼ � e3

e2
; c3 ¼

ðe1 þ e3c1Þ
ðe4 � e3c2Þ

f1 ¼
1

e2
; f3 ¼

n2
e2

; f6 ¼
ð1� e3f1Þ
ðe4 � e3c2Þ

; f7 ¼
ðe3f3 � n2Þ
ðe4 � e3c2Þ

e1 ¼ �A55 þ 2n2D55 � n22F55; e2 ¼ D11 � 2n1F11 þ n21H11

e3 ¼ �n1F11 þ n21H11; e4 ¼ �n21H11

ð9Þ

The state space concept in conjunction with the Jordan canonical form will be used to analyze the

deflection of sandwich beams with n shear piezoelectric actuators. Using this approach, Eqs. (8) will be

written in the state form by introducing the following state variables:

Z1 ¼ /; Z2 ¼ /0; Z3 ¼ w; Z4 ¼ w0; Z5 ¼ w00; Z6 ¼ w000 ð10Þ

Eqs. (8) along with Eqs. (10) can be combined into a single first-order system of equations as

fZ 0g ¼ ½A
fZg þ fF g ð11Þ

where the matrix ½A
 and the load vector fF g are given by
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½A
 ¼

0 1 0 0 0 0

c1 0 0 c1 0 c2
0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 c3 0 0 c3 0

2
6666664

3
7777775
; fF g ¼

0

f3Sp
x � f1Qp

x

0

0

0

f6ðQp
xÞ

0 þ f7ðSp
x Þ

0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð12Þ

Given that the matrix ½A
 has an eigenvalue with multiplicity 4, the solution to (11) will be given in terms of

the Jordan canonical form as

Z1

Z2

Z3

Z4

Z5

Z6

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

½M 
e½J 
x

k1
k2
k3
k4
k5
k6

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
; 06 x < l1;

½M 
e½J 
x

k12i�5

k12i�4

k12i�3

k12i�2

k12i�1

k12i

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

þ ½M 
e½J 
x
R x e�½J 
g½M 
�1fF ðgÞgdg; l2i�1 < x < l2i;

½M 
e½J 
x

k12iþ1

k12iþ2

k12iþ3

k12iþ4

k12iþ5

k12iþ6

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; l2i < x < l2iþ1;

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

i ¼ 1; . . . ; n

ð13Þ
where ½M 
 is a modal matrix, which contains eigenvectors and generalized eigenvectors of the matrix ½A
,
and e½J 
x is a block diagonal defined as

e½J 
x ¼

1 x 1
2
x2 1

6
x3 0 0

0 1 x 1
2
x2 0 0

0 0 1 x 0 0

0 0 0 1 0 0

0 0 0 0 ekx 0

0 0 0 0 0 e�kx

2
66666664

3
77777775

ð14Þ

where

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 þ c3 þ c2c3

p
ð15Þ

Substituting 12n continuity conditions and three boundary conditions at each end (x ¼ 0, x ¼ L) for the

desired combinations of boundary conditions, one has to solve 12nþ 6 simultaneous equations to find the
constants k1; k2; . . . ; k12nþ6. A similar procedure can be followed to analyze the deflection using the FOBT,

the reader should refer to Khdeir and Aldraihem (2001). In the FOBT, one needs 8n continuity conditions
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and two boundary conditions at each end for the desired combinations of boundary conditions to deter-

mine the k�s constants.

3. Results and discussion

The exact solutions developed in the previous section will be used to investigate the deflection of beams

with hinged–hinged (H–H), clamped–hinged (C–H), clamped–clamped (C–C), and clamped–free (C–F)

boundary conditions. The following materials properties are used in the analysis:

Fig. 2. The deflection curves of the HOBT: exact versus approximate for (a) H–H, (b) C–H, (c) C–C, (d) C–F boundary conditions.
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Aluminum (Khdeir and Aldraihem, 2001)

E ¼ 70:3 GPa; m ¼ 0:34

Foam (Khdeir and Aldraihem, 2001)

E ¼ 35:3 MPa; G ¼ 12:76 MPa

PZT5H (Electro Ceramic Division) 1

1 Electro Ceramic Division, Data for Designers, Morgan Matroc Inc., 232 Forbes Road, Bedford, OH 44146.

Fig. 3. The effect of the actuator central location on the deflection of the HOBT: exact versus approximate for (a) H–H, (b) C–H,

(c) C–C, (d) C–F boundary conditions.
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c11 ¼ 126 GPa; c12 ¼ 79:5 GPa; c13 ¼ 84:1 GPa; c33 ¼ 117 GPa; c44 ¼ 23 GPa

d15 ¼ 739:13� 10�12 m=V

The geometric configuration of the beam, as shown in Fig. 1, is assumed to be

L ¼ 0:1 m; tf ¼ 0:008 m; tP ¼ 0:002 m

The piezoelectric actuators are assumed to have identical material properties and to have same poling
orientations. The voltage applied on each actuator is 20 V. In the FOBT, a value of 5/6 was taken for the

shear correction factor.

Fig. 4. The effect of the actuator length on the deflection of the HOBT: exact versus approximate for (a) H–H, (b) C–H, (c) C–C,

(d) C–F boundary conditions.
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3.1. Comparison with approximate results

The exact analytical solutions presented in the previous section are used to evaluate the accuracy and the

validity of the approximate analytical solutions (Khdeir and Aldraihem, 2001). The deflection curves of
beams with one PZT5H actuator are obtained. The effects of actuator central location and the length on the

results are examined. In study (Khdeir and Aldraihem, 2001), the beam stiffnesses (A55, D11, D55, F11, F55,
H11) are assumed to be constant along the beam axis. To calculate these stiffnesses, the whole core is as-

sumed to have the properties of the foam.

Fig. 2 shows the beam deflection obtained by the present exact solution and the approximate solution

(Khdeir and Aldraihem, 2001). In the approximate analysis, two sets of deflection results are determined.

One set of results is for beams with cores of foam properties, and another set of results is for beams with cores of

PZT5H properties. For H–H, C–H and C–C beams, the approximate results of beams with PZT5H core
properties agree quit well with those obtained by the present exact results. If the beam core is assumed to possess

the foam properties, the approximate analysis overestimates the deflection when compared to that of the exact

analysis. The largest disagreement between the exact and the approximate results appears in the C–F beams.

The exact and the approximate analyses are further compared by examining the effects of the actuator

central location ðd ¼ ðl2 þ l1Þ=2Þ and length ða ¼ l2 � l1Þ on the results. In the approximate predication only

beams with PZT5H core properties are considered since the results of this approximation are shown above to

be closer to those of the exact results. Figs. 3 and 4 show the effects of the actuator location and length,

respectively, on the deflected shape. Changing the location of the piezoelectric actuator gives slight difference
between the deflection of the approximate and exact analysis. The difference increases, as the actuator gets

closer to the beam boundaries, except for C–F beam. Away from the actuator ends, increasing the length of

the actuator reduces the difference between the results of the approximate and the exact analyses.

3.2. Beams with two actuators

Beams with two shear piezoelectric actuators are considered. The exact model will be used in the

analysis. First, the validity of the FOBT results is evaluated for beams with two actuators of identical

lengths ða1 ¼ a2 ¼ 0:01 m) and located at d1 ¼ ðl1 þ l2Þ=2 ¼ 0:025 m and d2 ¼ ðl3 þ l4Þ=2 ¼ 0:075 m. Fig. 5

Fig. 5. The deflection curves of the FOBT and the HOBT for (a) H–H, C–H and C–C, (b) C–F boundary conditions.
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shows the deflected shapes of the FOBT and the HOBT. It is shown that there is a pronounced difference

between the results of the FOBT and to the HOBT. For all boundary conditions, the FOBT underestimate

the deflection when compared with the results of the HOBT. These results indicate that the first-order

beams are stiffer than the higher-order beams.

Since the FOBT lacks the ability to accurately predict the beam behavior, the HOBT will be used next
to investigate the effects of the actuator location and length on the deflection. Fig. 6 presents the effect of

the actuators central locations (d1 and d2) on the deflection of beams with various boundary conditions.

The length of the piezoelectric actuators are fixed to a1 ¼ a2 ¼ 0:01 m. For H–H and C–H beams, the

absolute maximum deflection increases by moving the actuators toward the beam center or toward the

supports. For C–C beams, the absolute maximum deflection increases by moving the actuators toward

Fig. 6. The effect of the actuators central locations (d1 and d2) on the deflection of beams with (a) H–H, (b) C–H, (c) C–C, (d) C–F

boundary conditions.

10 O.J. Aldraihem, A.A. Khdeir / International Journal of Solids and Structures 40 (2003) 1–12



the beams ends. For C–F beams, altering the central locations has no influence on the tip displacements of

the beams.

Fig. 7 shows the effect of the actuators lengths on the deflected shape. The central location of actuator 1

is fixed at d1 ¼ 0:025 m and of actuator 2 is fixed at d2 ¼ 0:075 m. Four significant values of a1 and a2 are
studied. For H–H beams, the deflection curve resembles saw teeth that rotate clockwise about the central
location with the increase of actuators lengths. Moreover, the slope of deflection becomes steeper in the

actuator region if the actuator length is reduced. In C–H beams, the deflection increases when the lengths of

the actuators are increased. The results of C–C beams are interesting. For the considered parameters, in-

creasing the actuators lengths does not necessarily increase the maximum deflection. In fact, actuators of

lengths a1 ¼ a2 ¼ 0:02 m can generate maximum deflection greater than that produced by actuators of

lengths a1 ¼ a2 ¼ 0:04 m. For C–F beams, the deflection increases when the actuators lengths are increased.

Fig. 7. The effect of the actuators lengths (a1 and a2) on the deflection of beams with (a) H–H, (b) C–H, (c) C–C, (d) C–F boundary

conditions.
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4. Conclusions

Exact analytical solutions are presented for beams with n actuators of shear piezoelectric. The solutions

obey the first-order and higher-order beam theories. The exact analytical solutions presented in this work
are used to evaluate the validity of the authors� previously reported solutions (Khdeir and Aldraihem,

2001). For the considered sandwich beams and when the core is assumed to have the properties of PZT5H,

the results of the approximate analysis (Khdeir and Aldraihem, 2001) agree quit well with those of the

present exact results. Changing the location of the actuator gives slight difference between the results of the

approximate and exact analyses. However, increasing the length of the actuator reduces the difference

between the results of the approximate and the exact analysis. The approximate analysis has one advantage

over the exact analysis. The approximate analysis requires solving only six simultaneous equations irre-

spective of the number of actuators and the type of boundary conditions. On the other hand, the exact
analysis requires solving 12nþ 6 simultaneous equations to obtain the solution for a beam with n piezo-

electric actuators.

Through a demonstrative example, a comparative study of the first-order and higher-order beams with

two actuators is attained. For the considered beam�s properties, it is observed that the first-order beam

cannot predict the beam behavior when compared with the results of the higher-order beam.

Further applications of the solutions are presented by investigating the effects of actuators lengths and

locations on the deflected shape of beams with two shear actuators. Some interesting deflected shapes are

presented. For example, the deflection curve of a H–H beam resembles saw teeth that rotate clockwise
about the central location with the increase of actuators lengths.

The presented solutions can be used in the design process to obtain detailed deformation information of

beams with various boundary conditions. Moreover, the presented exact analysis can be readily used to

perform precise shape control of beams with n segments of shear piezoelectric. Finally, the present analysis

can be used as benchmarks for approximate solutions obtained by the finite element method and the

Rayleigh–Ritz method.
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